skip to main content


Search for: All records

Creators/Authors contains: "Lee, Junseok"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 22, 2024
  2. Abstract

    Here, we describe surface functionalized, superparamagnetic iron oxide nanocrystals (IONCs) for ultra-high PFAS sorption and precise, low energy (magnetic) separation, considering perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). As a function of surface coating, sorption capacities described are considerably higher than previous studies using activated carbon, polymers, and unmodified metal/metal oxides, among others. In particular, positively charged polyethyleneimine (PEI) coated IONCs demonstrate extreme sorption capacities for both PFOA and PFOS due to electrostatic and hydrophobic interactions, along with high polymer grafting densities, while remaining stable in water, thus maintaining available surface area. Further, through a newly developed method using a quart crystal microbalance with dissipation (QCM-D), we present real-time, interfacial observations (e.g., sorption kinetics). Through this method, we explore underpinning mechanism(s) for differential PFAS (PFOA vs PFOS) sorption behavior(s), demonstrating that PFAS functional head group strongly influence molecular orientation on/at the sorbent interface. The effects of water chemistry, including pH, ionic composition of water, and natural organic matter on sorption behavior are also evaluated and along with material (treatment) demonstration via bench-scale column studies.

     
    more » « less
  3. Abstract

    Materials keeping thickness in atomic scale but extending primarily in lateral dimensions offer properties attractive for many emerging applications. However, compared to crystalline counterparts, synthesis of atomically thin films in the highly disordered amorphous form, which avoids nonuniformity and defects associated with grain boundaries, is challenging due to their metastable nature. Here we present a scalable and solution-based strategy to prepare large-area, freestanding quasi-2D amorphous carbon nanomembranes with predominant sp2bonding and thickness down to 1–2 atomic layers, from coal-derived carbon dots as precursors. These atomically thin amorphous carbon films are mechanically strong with modulus of 400 ± 100 GPa and demonstrate robust dielectric properties with high dielectric strength above 20 MV cm−1and low leakage current density below 10−4 A cm−2through a scaled thickness of three-atomic layers. They can be implemented as solution-deposited ultrathin gate dielectrics in transistors or ion-transport media in memristors, enabling exceptional device performance and spatiotemporal uniformity.

     
    more » « less
  4. Abstract

    In this work, we develop and demonstrate highly stable organic-coated engineered superparamagnetic iron oxide nanoparticles (IONPs), which provide effective osmotic pressure without aggregation, reverse diffusion, or membrane blocking (by nanoparticles) for osmotically driven membrane systems, considering both forward osmosis (FO) and pressure-retarded osmosis (PRO). For this, we synthesized highly water stable, monodisperse 12 nm IONPs with a rational series of water stabilizing surface coatings, including sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and polyethylene glycol (PEG). We then compared the library of surface functionalized IONPs as draw solutes for osmotic pressure-driven membrane processes. As synthesized, surface (organic) coatings are compact, thin, and can have very similar surface charge as the membrane itself, which results in effective osmotic pressure in forward osmosis (FO) mode configuration. To increase the osmotic pressure further, on a per mass basis, we synthesized and demonstrated novel hollow IONPs with identical surface coatings. Finally, water flux was further enhanced for stable particle systems using an oscillating magnetic field, thus physically altering concentration gradients, as a function of particle magnetic properties.

     
    more » « less
  5. Robotic Materials are materials that have sensing, computation and, possibly actuation, distributed throughout the bulk of the material. In such a material, we envision semiconducting polymer based sensing, actuation, and information processing for on-board decision making to be designed, in tandem, with the smart product that will be implemented with the smart material. Prior work in printing polymer semiconductors for sensing and cognition have focused on highly energetic inkjet printing. Alternatively, we are developing liquid polymer extrusion processes to work hand-in-hand with existing solid polymer extrusion processes (such as Fused Deposition Manufacturing - FDM) to simultaneously deposit sensing, computation, actuation and structure. We demonstrate the successful extrusion printing of conductors and capacitors to impedance-match a new, higher-performance organic transistor design that solves the cascading problem of the device previously reported and is more amenable to liquid extrusion printing. Consequently, these printed devices are integrated into a sheet material that is folded into a 3-D, six-legged walking machine with attached electric motor. 
    more » « less
  6. Abstract

    Nanoparticle (NP)‐based drug delivery systems or nanomedicines have broadened the horizon of translational research for decades. Conventional bulk mixing synthesis methods have impeded successful clinical translations of nanomedicines due to the limited ability of the controlled, scalable production with high uniformity. Herein, an on‐chip preparation of self‐assembled, drug‐encapsulated polymeric NPs is presented for their improved uniformity and homogeneity that results in enhanced anti‐cancer effect in vitro and in vivo. The NPs are formulated through rapid convective mixing of two aqueous solutions of a hydrophilic polymer and an anti‐cancer drug, doxorubicin (DOX), in the swirling microvortex reactor (SMR). Compared to conventional bulk‐mixed NPs (BMPs), the microvortex‐synthesized NPs (MVPs) exhibit narrower size distributions and better size tunability. It is found that the improved uniformity and homogeneity of the MVPs not only enhance cellular uptake and anti‐cancer effect with pH‐responsive drug release in vitro, but also result in an improved tumor regression and decreased side effects at off‐targeted organs in vivo. The findings demonstrate that uniformly designed NPs with more homogeneous properties can induce a significant enhancement of an anti‐cancer effect in vivo. The results show the potential of a high‐speed on‐chip synthesis as a scalable manufacturing platform for reliable clinical translations of nanomedicines.

     
    more » « less